# A new era in Management of CKD and the role of Dapagliflozin

## **Dr. Hormaz Dastoor**

Consultant Nephrologist at Seha Kidney Care and Sheikh Shakhbout Medical City



## Disclaimer

- AstraZeneca abides by the IFPMA Code of Pharmaceutical Marketing Practices, the Middle East & Africa LAWG Code of Practices and AstraZeneca Global Policies, and as such will not engage in the promotion of unregistered products or unapproved indications
- Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the speakers individually and, unless expressly stated to the contrary, are not the opinion or position of AstraZeneca. AstraZeneca does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented
- Please refer to the appropriate approved Product Information before prescribing any agents mentioned in this presentation

## **Over 840 million people suffer from CKD worldwide<sup>1</sup>**

Meta-analysis estimating the global prevalence of CKD (stages 3–5)<sup>2,a</sup>



<sup>a</sup>Global prevalence reported as percentage with 95% confidence intervals.

 $_{3}$  CKD = chronic kidney disease.

1. Jager KJ et al. Nephrol Dial Transplant. 2019;34:1803-1805; 2. Hill NR et al. PLoS One. 2016;11:e0158765.

## Compared with T2D alone, comorbid CKD increases CV mortality

Standardised 10-year cumulative incidence of CV mortality by diabetes and kidney disease status



4

# Risk of CV events in patients with diabetes increases as albuminuria progresses and eGFR declines



# Diagnosis of CKD relies on assessment of kidney damage and/or function<sup>1</sup>

| Early-stage k | idney | disease   | is usually          |
|---------------|-------|-----------|---------------------|
| asympt        | omati | ic, requi | ring                |
| laboratory    | tests | for dete  | ection <sup>1</sup> |

Guideline-recommended laboratory tests to<br/>evaluate and stage kidney disease includeeGFRAlbuminuria<br/>(UACR)Index of kidney functionMarker of kidney damage

Clinical diagnosis of CKD is defined <u>eGFR <60 mL/min/1.73m<sup>2</sup></u> or as <u>UACR >30 mg/g</u> which persists for > 3 months

UACR and eGFR should be <u>assessed annually in all patients</u> with T2D regardless of treatment, and <u>twice annually in patients with UACR>30mg/g and/or eGFR<60 mL/min/1.73m<sup>2 2</sup></u>

1. Levey AS, et al. JAMA 2015;313:837–846; 2. American Diabetes Association. Diabetes Care 2020;43(suppl 1):S135–S151; 3. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kidney Int Suppl 2013;3:1–150

# KDIGO recommends screening for CKD in high-risk individuals such as those with hypertension, diabetes, or CVD<sup>1</sup>



This CKD screening strategy:<sup>1</sup>

Prioritizes identification of persons at high risk for CKD progression and CV events, with established treatment strategies

Detects individuals with CKD at a lower cost per case identified than population-wide screening programs

#### Hypertension, diabetes, and CVD are established CKD risk factors<sup>2</sup> Therefore, CKD prevalence is expected to be higher among these individuals<sup>1</sup>

CKD = chronic kidney disease; CV = cardiovascular; CVD = cardiovascular disease; eGFR = estimated glomerular filtration rate; KDIGO = Kidney Disease: Improving Global Outcomes; NHANES = National Health and Nutrition Examination Survey; UACR = urine albumin:creatinine ratio.

7 1. Shlipak MG et al. *Kidney Int.* 2021;99:34-47; 2. United States Renal Data System. 2018 Annual Data Report. Chronic kidney disease: CKD in the general population. https://www.usrds.org/media/1723/v1\_c01\_genpop\_18\_usrds.pdf.

© AstraZeneca 2021

# Assessment of both eGFR and UACR is critical for diagnosing CKD and predicting prognosis<sup>1</sup>

| Risk of progr                     | ession                     |                                                  |            |                                                |                                        |                                    |  |
|-----------------------------------|----------------------------|--------------------------------------------------|------------|------------------------------------------------|----------------------------------------|------------------------------------|--|
| Low risk (if of kidney di         | no other m<br>isease, no ( | arkers<br>CKD)                                   |            | Progres                                        | sing kidney damage (UA                 | ACR)                               |  |
| Moderately                        | increased                  | risk                                             |            | Persistent albuminuria categories <sup>a</sup> |                                        |                                    |  |
| High risk A1 A2                   |                            |                                                  |            |                                                |                                        | A3                                 |  |
| Very high ri                      | sk                         | Prognosis of CKD by Gl<br>and albuminuria catego | FR<br>ries | Normal to mildly<br>increased<br><30 mg/g      | Moderately<br>increased<br>30–299 mg/g | Severely<br>increased<br>≥300 mg/g |  |
| 2                                 | G1                         | Normal or high                                   | ≥90        | Monitor                                        | Treat                                  | Treat and consult                  |  |
| n (eGFF<br>25<br>m <sup>2</sup> ) | G2                         | Mildly decreased                                 | 60–89      | Monitor                                        | Treat                                  | Treat and consult                  |  |
| functio<br>egorie<br>/1.73 1      | G3a                        | Mildly to moderately decreased                   | 45–59      | Treat                                          | Treat                                  | Treat and consult                  |  |
| kidney<br>FR cat<br>./min/        | G3b                        | Moderately to severely decreased                 | 30–44      | Treat                                          | Treat and consult                      | Treat and consult                  |  |
| eclining<br>Gl<br>(ml             | G4                         | Severely decreased                               | 15–29      | Treat and consult                              | Treat and consult                      | Treat and consult                  |  |
|                                   | G5                         | Kidney failure                                   | <15        | Treat and consult                              | Treat and consult                      | Treat and consult                  |  |

Figure from KDIGO 2020<sup>2</sup>; hypothetical patient profile <sup>a</sup>Alternative units for these three UACR categories include: <3 mg/mmol, 3–30 mg/mmol, and >30 mg/mmol<sup>2</sup> See slide notes for abbreviations and references

# The causes of CKD are diverse, with hypertension and diabetes responsible for more than half of all CKD cases

Age-standardized global prevalence rate of CKD by cause per 100,000 persons in 2016<sup>1</sup>





#### <sup>a</sup>Self-reported CVD.

CKD = chronic kidney disease; CVD = cardiovascular disease; UI = uncertainty interval.

9 1. Xie Y et al. Kidney Int. 2018;94:567-581; 2. National Institute of Diabetes and Digestive and Kidney Diseases. Kidney disease statistics for the United States. https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease; 3. Jager KJ et al. Nephrol Dial Transplant. 2017;32:ii121-ii128.

# Data suggest a high rate of underdiagnosis and extremely low patient awareness of early-stage CKD



<sup>a</sup>Excluding end-stage kidney disease treated with dialysis or kidney transplant; <sup>b</sup>EHR-based registry jointly curated and sponsored by PSJH and UCLA using Epic EHRs (Epic Systems); <sup>c</sup>Patients who met the initial CURE-CKD registry criteria were diagnosed with CKD using the CKD-epidemiology equation from the mean of at least two serum creatinine measurements ≥90 days apart; <sup>d</sup>NHANES data are representative of the non-institutionalized U.S. population, with oversampling of certain subgroups to increase reliability and precision of health indicator estimates; <sup>e</sup>Awareness was assessed as those who reported being told that they had kidney disease; <sup>f</sup>Pooled data of 1164 patients with evidence of CKD from the 2009, 2010 and, 2016 Health Survey for England, an annual, population-based cross-sectional survey of adults and children living in private households in England.

CKD = chronic kidney disease; CURE-CKD = Center for Kidney Disease Research, Education, and Hope; EHR = electronic health record; NHANES = National Health and Nutrition Examination Survey; PSJH = Providence St. Joseph Health; UCLA = University of California, Los Angeles.

1. Tuttle KR et al. JAMA Netw Open. 2019;2:e1918169; 2. United States Renal Data System. 2020 Annual Data Report. Chronic kidney disease: CKD in the general population. https://adr.usrds.org/2020/chronic-kidney-disease/1-ckd-in-the-general-population; 3. Sultan AA et al. Presented at: WCN; April 16-19, 2021; Virtual.

## **Prevalence of Chronic Kidney Disease**



- More than <u>1 in 7, that is 15%</u> of US adults or 37 million people, are estimated to have CKD.<sup>\*</sup>
- As many as 9 in 10 adults with CKD do not know they have CKD.
- About 2 in 5 adults with **severe** CKD **do not know** they have CKD.



More than 1 in 7

15% of US adults are estimated to have chronic kidney disease—that is about 37 million people.



.

<sup>&</sup>lt;sup>4</sup> These estimates were based on a single measure of albuminuria or serum creatinine; they do not account for the persistence of albuminuria or levels of creatinine that are higher than normal as indicated by the KDIQO recommendations.

- UAE Population as of March 2022 is **10.08 Million**.
- The Total Expat Population of UAE in 2022 is 8.92 Million.



## **Population pyramid in UAE**



Generated from US Census Bureau International Data Base using Excel 2019

## **Percent of Patients with Renal Disease Based on eGFR**



17

## **Kidney Disease is a Global Crisis**



Source: WHO Global Health Estimates.

#### Leading causes of death in high-income countries



Source: WHO Global Health Estimates. Note: World Bank 2020 income classification.

## Improvement in CKD Mortality Has Been Limited, While the RRT Burden Has Continued to Rise



CKD = chronic kidney disease; COPD = chronic obstructive pulmonary disorder; RRT = renal replacement therapy.

19 1. GBD 2017 Causes of Death Collaborators. *Lancet.* 2018;392:1736-1788; 2. Liyanage T, et al. *Lancet.* 2015;385:1975-1982.

# Costs in 2019

- Overall Medicare costs for people with CKD were \$87.2 billion in 2019
  - \$24,453 per Medicare beneficiary > 65 years.
- Total Medicare fee-for-service spending (including prescription drugs) for patients with ESRD or kidney failure reached \$37.3 billion.
  - <u>\$86,400 per person ~ AED 328,624</u>
  - 7% of the Medicare paid claims costs.

- CKD impacts 1 in 9 (~850 million) people globally<sup>1</sup>
  - ~2.6 million receiving RRT
  - ~1.2 million deaths annually
- The number receiving RRT is estimated to increase to more than <u>5 million by 2030</u>
- Many developed nations spend over 2-3% of their annual healthcare budget on ESKD treatment alone

## **Treatment Strategies in Chronic Kidney Disease**

# RAASi has been the standard of care for CKD for past 20 years to delay CKD progression



aRRR, absolute relative risk reduction; ESRD, end-stage renal disease; IDNT, Irbesartan Diabetic Nephropathy Trial; RAASi, renin-angiotensin-aidosterone system inhibitors; RENAAL, Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan; T2D, type 2 diabetes

31 1. Brenner BM et al. N Engl J Med. 2001;345:861–9; 2. Lewis EJ et al. N Engl J Med. 2001;345:851–60

# However, RAASi still possesses substantial residual risk of CKD progression



DKD, diabetic kidney disease; ESRD, end-stage renal disease; SoC, standard of care

32 1. Brenner B, et al. N Engl J Med 2001;345:861–869; 2. Lewis EJ, et al. N Eng J Med 2001;345:851–860

# In T2DM optimal risk factor management does not eliminate risk of diabetic nephropathy<sup>a</sup>



<sup>a</sup>Diabetic nephropathy was defined as a urinary albumin excretion of more than 300 mg/24 hours in two of three consecutive sterile urine specimens<sup>2</sup>; <sup>b</sup>Hypertension was treated with ACE inhibitors as initial treatment with angiotensin-II receptor antagonist used if adverse events. Thiazides, calcium-channel blockers, and beta-blockers added as needed; <sup>c</sup>Antidiabetic therapy with metformin, gliclazide, and/or insulin; <sup>d</sup>Hypertriglyceridemia treatment with fibrate; <sup>e</sup>Dyslipidemia treatment with statin.

33 1. Gaede P et al. Lancet. 1999;353:617–622; 2. Fioretto P et al. Nat Rev Endocrinol. 2010;6:19–25.

#### Effect of losartan and irbesartan, compared to placebo, on the risk of renal composite<sup>1,2</sup>

|                             | Treatmen      | nt group              | Placeb        | o group               |              |                   |         |
|-----------------------------|---------------|-----------------------|---------------|-----------------------|--------------|-------------------|---------|
| Renal outcome               | Number<br>(%) | Events<br>per 100 P-Y | Number<br>(%) | Events<br>per 100 P-Y |              | Risk value        | P value |
| RENAAL1                     |               |                       |               |                       | ian ian      | HR (95% CI)       |         |
| Primary composite end point | 327 (43.5)    | 15.9                  | 359 (47.1)    | 18.1                  |              | 0.84 (0.72, 0.98) | 0.02    |
| dSCr                        | 162 (21.6)    | 7.9                   | 198 (26.0)    | 10.0                  |              | 0.75 (0.61, 0.92) | 0.006   |
| ESRD                        | 147 (19.6)    | 6.8                   | 194 (25.5)    | 9.1                   |              | 0.68 (0.58, 0.89) | 0.002   |
| All-cause mortality         | 158 (21.0)    | 6.8                   | 155 (20.3)    | 6.6                   |              | 1.02 (0.81, 1.27) | 0.88    |
|                             |               |                       |               | :                     | 50 30 10 -10 | -30               |         |
| IDNT <sup>2</sup>           |               |                       |               |                       |              | RR (95% CI)       |         |
| Primary composite end point | 189 (32.6)    | -                     | 222 (39.0)    | -                     |              | 0.81 (0.67-0.99)  | 0.03    |
| dSCr                        | 98 (16.9)     | -                     | 135 (23.7)    | -                     |              | 0.71 (0.54-0.92)  | 0.009   |
| ESRD                        | 82 (14.2)     | -                     | 101 (17.8)    | -                     |              | 0.83 (0.62-1.11)  | 0.19    |
|                             | 07 (15 0)     |                       | 93 (16.3)     | 4                     |              | 0.94 (0.70-1.27)  | 0.69    |

## SGLT2i – Explaining its Role in Prevention and Progression of Chronic Kidney Disease

# SGLT2 inhibition and RAAS blockade both reduce glomerular pressure and hyperfiltration by complementary mechanisms<sup>1–3</sup>



© AstraZeneca 2021

1. Van Bommel EJ, et al. *Clin J Am Soc Nephrol* 2017;12:700–710; 2. Seidu S, et al. *Prim Care Diabetes* 2018;12:265–283; 3. Cherney DZ, et al. *Circulation* 2014;129:587–597;
4. Heerspink HJL, et al. *Diabetes Care* 2011;34(Suppl. 2):S325–S329

# DAPA-CKD was a landmark trial assessing forxiga in over 4,000 patients with CKD, with and without T2D <sup>1,2</sup>



<sup>a</sup>ESKD defined as the need for maintenance dialysis (peritoneal or hemodialysis) for more than 28 days, renal transplantation or sustained eGFR <15mL/min/1.73m<sup>2</sup> for at least 28 days.

ACEi = angiotensin-converting enzyme inhibitor; ANCA = anti-neutrophil cytoplasmic antibody; ARB = angiotensin-receptor blocker; CKD = chronic kidney disease; CV = cardiovascular; eGFR = estimated glomerular filtration rate; ESKD = end-stage kidney disease; hHF = hospitalization for heart failure; T1D = type 1 diabetes; T2D = type 2 diabetes; UACR = urinary albumin-to-creatinine ratio.



1 Hearspink Hill at al Nanhral Dial Transplant 2020:35:274, 282: 2 Hearspink Hill at al N Engl I Med 2020: 383:1436-1446

# Treatment with forxiga has shown to reduce the risk of the composite of declining kidney function, ESKD, and renal or CV death<sup>1,2</sup>



\*Primary composite endpoint of  $\geq$ 50% sustained decline in eGFR, reaching ESKD, and renal or CV death<sup>1</sup>. ESKD defined as the need for maintenance dialysis (peritoneal or haemodialysis) for at least 28 days and renal transplantation or sustained eGFR <15 mL/min/1.73m<sup>2</sup> for at least 28 days<sup>1</sup>; <sup>†</sup>There was no significant interaction of the effect on the primary composite endpoint by diabetes status (p for interaction = 0.24).<sup>2</sup>

ARR = absolute risk reduction; CI = confidence interval; CKD = chronic kidney disease; CV = cardiovascular; DAPA-CKD = Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease; eGFR = estimated glomerular filtration rate; ESKD = end-stage kidney disease; HR = hazard ratio; NNT = number needed to treat; RRR = relative risk reduction; T2D = Type 2 diabetes.

Reference: 1.Heerspink HJL et al. N Engl J Med. 2020;383(15):1436–1446.2. Wheeler DC et al. Lancet Diabetes Endocrinol. 2021;9(1):22–31



## forxiga Offered consistent protection by reducing the risk of the primary composite endpoint in patients with or without T2D<sup>1\*</sup>

#### DAPA-CKD EXPLORATORY SUBGROUP ANALYSIS: DECLINING KIDNEY FUNCTION. ESKD. AND RENAL OR CV DEATH<sup>2\*</sup>



\*Primary composite endpoint of ≥50% sustained decline in eGFR, reaching ESKD, and renal or CV death. ESKD defined as the need for maintenance dialysis (peritoneal or haemodialysis) for at least 28 days and renal transplantation or sustained eGFR <15 mL/min/1.73m2 for at least 28 days.<sup>1</sup>

ARR = absolute risk reduction; CI = confidence interval; CKD = chronic kidney disease; CV = cardiovascular; DAPA-CKD = Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease; HR = hazard ratio; RRR = relative risk reduction; T2D = Type 2 diabetes.

Reference: 1. Wheeler DC et al. Lancet Diabetes Endocrinol. 2021;9(1):22-31. 2. Heerspink HJL et al. N Engl J Med. 2020;383(15):1436-1446.

#### Patients without T2D<sup>1</sup>

C

# The significant effect on the composite endpoint of CV death or hospitalization for heart failure was consistent with previous Forxiga trials<sup>1</sup>



• ARR = absolute risk reduction; CV = cardiovascular; DAPA = dapagliflozin; HR = hazard ratio; RRR = relative risk reduction.

• 1. Heerspink HJL et al. N Engl J Med. 2020; 383:1436-1446; 2. Heerspink HJL. Presented at: ESC Congress – The Digital Experience; August 29 – September 1, 2020.

©

# forxiga decreased the risk of progression to the renal composite endpoint<sup>a</sup> across the spectrum of renal function

|                                   | Dapagliflozin |                               | Plac          | Placebo                       |                         |                          |                |
|-----------------------------------|---------------|-------------------------------|---------------|-------------------------------|-------------------------|--------------------------|----------------|
|                                   | n/N (%)       | KM<br>event rate<br>(4 years) | n/N (%)       | KM<br>event rate<br>(4 years) | •                       | Hazard ratio<br>(95% Cl) | <i>P</i> value |
| Baseline eGFR                     |               |                               |               |                               |                         |                          |                |
| ≥90 mL/min/1.73 m²                | 41/4137 (1.0) | 1.0%                          | 79/4025 (2.0) | 2.0%                          | ⊢∎⊣                     | 0.50 (0.34, 0.73)        | 0.87           |
| 60–<90 mL/min/1.73 m <sup>2</sup> | 65/3838 (1.7) | 1.6%                          | 121/3894 (3.1 | ) 2.8%                        | <b>⊢</b> ∎              | 0.54 (0.40, 0.73)        |                |
| <60 mL/min/1.73 m <sup>2</sup>    | 21/606 (3.5)  | 3.8%                          | 38/659 (5.8)  | 5.8%                          | ■                       | 0.60 (0.35, 1.02)        |                |
| Baseline UACR                     |               |                               |               |                               |                         |                          |                |
| <30 mg/g                          | 50/5819 (0.9) | 0.9%                          | 95/5825 (1.6) | 1.5%                          | ⊢■→                     | 0.52 (0.37, 0.74)        | 0.30           |
| 30–300 mg/g                       | 39/2017 (1.9) | 2.0%                          | 66/2013 (3.3) | 3.3%                          | ⊢■→                     | 0.59 (0.39, 0.87)        |                |
| >300 mg/g                         | 31/594 (5.2)  | 4.8%                          | 75/575 (13.0) | 12.8%                         |                         | 0.38 (0.25, 0.58)        |                |
|                                   |               |                               |               | 0.1                           | <u>0.5</u> 1.⊓          | $0 \xrightarrow{1.5}$    |                |
|                                   |               |                               |               |                               | Favors<br>dapagliflozin | Favors<br>placebo        |                |

<sup>a</sup>This was a prespecified exploratory endpoint, defined as sustained eGFR decrease ≥40% to <60 mL/min/1.73 m<sup>2</sup>, ESRD, or renal death. Due to the trial meeting only one of its primary efficacy endpoints for superiority (CV death or hHF), all other analyses of additional outcomes should be considered hypothesis-generating only

CI, confidence interval; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; hHF, hospitalization for heart failure; KM, Kaplan–Meier; UACR, urine albumin:creatinine ratio

Mosenzon O, et al. Lancet Diabetes Endocrinol 2019;7:606-617

© .

## The effects of SGLT2 inhibition on glomerular pressure drive an initial decline in eGFR, which subsequently stabilizes

The initial reduction in eGFR induced by SGLT2 inhibitors is intrinsic to the SGLT2 inhibitor mechanism of action<sup>1</sup>





+P<0.0001, eGFR, estimated glomerular filtration rate; SGLT2, sodium-glucose co-transporter 2; T2D, Type 2 diabetes 1. Konishi H, et al. J Endocrinol Metab 2018;8:106–112; 2. Mosenzon O, et al. Lancet Diabetes Endocrinol 2019;7:606–61

# forxiga.consistently reduced the risk of microalbuminuria progression in T2D Patients



References:. 1. Wiviott SD et al. N Engl J Med. 2019;380(4):347-357; 2. Raz I et al. Diabetes Obes Metab. 2018;20(5):1102-1110; 3. Mosenzon O, et al. Lancet Diabetes Endocrinol. 2019;7(8):606-617; 4. Zelniker TA et al. Article and supplementary appendix. JAMA Cardiol. 2021;6(7):801-810.



# forxiga gives your patient the chance for Dialysis Free Years!<sup>1-3</sup>



\*Delaying mean time to end stage renal disease<sup>2</sup> eGFR, estimated glomerular filtration rate; PBO, placebo



# forxiga reduces UACR, an independent risk factor for CV death<sup>1</sup>







CI = confidence interval; IQR = interquartile range; T2D = type 2 diabetes; UACR = urinary albumin-to-creatinine ratio Jongs N et al. Presented at: ERA-EDTA Congress; June 5-8, 2021; Virtual.

# forxiga showed consistent safety profile in CKD patients with or without T2D<sup>1,2</sup>

Prespecified selected safety outcomes by diabetes status<sup>2</sup>

|                                    | Patients w                | ith T2D             | Patients without T2D     |                           |  |
|------------------------------------|---------------------------|---------------------|--------------------------|---------------------------|--|
| Select AEs                         | FORXIGA 10 mg<br>(n=1453) | Placebo<br>(n=1450) | FORXIGA 10 mg<br>(n=696) | <b>Placebo</b><br>(n=699) |  |
| Diabetic ketoacidosis              | 0                         | 2                   | -                        | -                         |  |
| Major hypoglycaemia                | 14                        | 28                  | -                        | -                         |  |
| Volume depletion                   | 92                        | 71                  | 35                       | 19                        |  |
| Amputation                         | 35                        | 38                  | 0                        | 1                         |  |
| Fracture                           | 65                        | 51                  | 20                       | 18                        |  |
| Renal AE (e.g acute kidney injury) | 121                       | 148                 | 34                       | 40                        |  |

 $\checkmark$  In patients with or without T2D, incidence of hyperkalaemia was 0.3% in patients on FORXIGA vs 0.6% in patients receiving placebo<sup>3</sup>

In DAPA-CKD, rates of overall SAEs were lower with FORXIGA vs. placebo (633/2149[30%] vs. 729/2149[34%], p=0.002 <sup>y</sup>

No occurrences of severe hypoglycaemic events, or diabetic ketoacidosis, or DKA were observed in patients without T2D in DAPACKD.<sup>2</sup>

\*All cases of diabetic ketoacidosis occurred in patients with diabetes at baseline<sup>2</sup>; \*\*Adverse event with the following criteria, confirmed by the investigator: symptoms of severe impairment in consciousness or behaviour, need for external assistance, use of an intervention to treat hypoglycaemia, and prompt recovery of acute symptoms following the intervention<sup>2</sup>.

AE=adverse event; CKD=chronic kidney disease; DAPA-CKD=Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease; DKA=diabetic ketoacidosis; SAE=serious adverse event; T2D=Type 2 diabetes

References: 1.Heerspink HJL et al. N Engl J Med. 2020;383(15):1436–1446.2. Wheeler DC et al. Lancet Diabetes Endocrinol. 2021;9(1):22–31 3.Supplement to: Heerspink HJL et al. N Engl J Med. 2020;383(15):1436–1446. 1446.



# forxiga has demonstrated a consistent safety profile in >32,000 patients across DECLARE-TIMI 58, DAPA-HF, DAPA-CKD, and DELIVER<sup>1-4</sup>

| Select AEs               | DECLARE-TIMI 58<br>(CVOT in T2D) <sup>1</sup> |                            | DAPA-HF (HFrEF) <sup>2</sup> DAPA-C |                                                                    | CKD <sup>3</sup>                   | DELIVER <sup>4</sup>       |                                   |                  |
|--------------------------|-----------------------------------------------|----------------------------|-------------------------------------|--------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------|------------------|
|                          | Dapagliflozin<br>10mg<br>(n=8574)             | <b>Placebo</b><br>(n=8569) | Dapagliflozin<br>10mg<br>(n=2368)   | <b>Placebo</b><br>(n=2368)                                         | Dapagliflozin 10<br>mg<br>(n=2149) | <b>Placebo</b><br>(n=2149) | Dapagliflozin<br>10mg<br>(N=3131) | Placebo (n=3127) |
| Diabetic<br>ketoacidosis | 0.3%                                          | 0.1%                       | 0.1%                                | 0.0%                                                               | 0.0%                               | <0.1%                      | 0.1%                              | 0.0%             |
| Severe<br>hypoglycemiaª  | 0.7%                                          | 1.0%                       | 0.2%                                | 0.2%                                                               | 0.7%                               | 1.3%                       | 0.2%                              | 0.2%             |
| Volume depletion         | 2.5%                                          | 2.4%                       | 7.5%                                | 6.8%                                                               | 5.9%                               | 4.2%                       | 1.3%                              | 1.0%             |
| Amputation               | 1.4%                                          | 1.3%                       | 0.5%                                | 0.5%                                                               | 1.6%                               | 1.8%                       | 0.6%                              | 0.8%             |
| Fracture                 | 5.3%                                          | 5.1%                       | 2.1%                                | 2.1%                                                               | 4.0%                               | 3.2%                       | TBD                               | TBD              |
| Hyperkalemia             | No hyperkalemia (not listed in SmPC)          |                            |                                     | No increase in either mild or moderate/severe hypokalemia observed |                                    | TBD                        | TBD                               |                  |
| Renal AE                 | 1.5% <sup>b</sup>                             | 2.0% <sup>b</sup>          | 6.5%                                | 7.2%                                                               | 7.2%                               | 8.7%                       | 2.3%                              | 2.5%             |
| Serious UTI              | 0.9%                                          | 1.3%                       | 0.5%                                | 0.7%                                                               | 0.9%                               | 0.7%                       | TBD                               | TBD              |

#### Prespecified selected safety outcomes across dapagliflozin clinical trials

It is estimated that >23 million patients were treated with FORXIGA and XIGDUO across indications throughout 2023<sup>6</sup>

<sup>a</sup>Severe hypoglycemia was defined in DAPA-CKD and DELIVER as hypoglycemia with the following criteria, confirmed by the investigator: symptoms of severe impairment in consciousness or behavior, need for external assistance, use of an intervention to treat hypoglycemia, and prompt recovery of acute symptoms following the intervention.<sup>2,4,5</sup> Severe hypoglycemia was defined in DECLARE and DAPA-HF as hypoglycemia requiring the assistance of another person to actively administer carbohydrates or glucagon or to take other corrective action.<sup>1,2</sup> All cases of major hypoglycemia in DAPA-CKD and DAPA-HF occurred in patients with diabetes at baseline<sup>2,3</sup>; <sup>b</sup>Acute kidney injury<sup>1</sup> AE, adverse event; CVOT, cardiovascular outcomes trial; HFrEF, heart failure with reduced ejection fraction; SmPC, Summary of Product Characteristics; T2D, Type 2 diabetes; TBD, to be determined; UTI, urinary tract infection

forxiga

1. Wiviott SD, et al. *N Engl J Med* 2019;380:347–357; 2. McMurray J, et al. *N Engl J Med* 2019;381:1995–2008; 3. Heerspink HJL, et al. *N Engl J Med* 2020;383:1436–1446; 4. Solomon S, et al. *N Engl J Med* 2022;387:1089–1098; 5. AstraZeneca UK Limited. FORXIGA Summary of Product Characteristics [YEAR]. Available at: [Placeholder for link subject to final approval by the European Medical Agency]; 6. AstraZeneca Pharmaceuticals LP. Data on File

## FORXIGA is the ONLY SGLT2i to demonstrate a significant reduction in allcause mortality & CV death/hHF in CKD Patients with or without T2D



C

- Study results not to be directly compared due to differences in design, patient populations, and treatment groups
- Note: green check indicates the endpoint met statistical significance
- <sup>a</sup>Median follow-up of 2.4 years; <sup>b</sup>Median follow-up of 2.0 years
- CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; hHF, hospitalization for heart failure; NNT, number needed to treat;

NS, non-significant; RRR, relative risk reduction; SGLT2, sodium-glucose co-transporter 2

• 1. Heerspink HJL, et al. N Engl J Med 2020:383:1436–1446: 2. The EMPA-KIDNEY Collaborative Group, N Engl J Med 2023:388:117–127



- Recommendation 3.6.1:
- We recommend treating adults with CKD and Heart failure or eGFR ≥20 mL/min/1.73 m<sup>2</sup> with UACR ≥200 mg/g with an SGLT2 inhibitor (1A)
- Recommendation 3.6.2:
- We suggest treating adults with eGFR ≥20-45 mL/min/1.73 m<sup>2</sup> with UACR <200 mg/g with an SGLT2 inhibitor (2B)</li>

<sup>a</sup>Presentation includes draft guideline statements that are subject to change. Note: Level 1 = "We recommend" and Grade A = High quality of evidence; Level 2 = "We suggest" and Grade B = Moderate quality of evidence.<sup>2.</sup> CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; ERA = Level KDIGO = Kidney Disease: Improving Global Outcomes;

SGLT2 = sodium-glucose cotransporter 2; UACR = une atumo contractive not. 1. Madero M. Present at 60<sup>th</sup> EAA Corgress: June 16-18, 2022 Main, lay or Vinal, heps/higo.org/contence/es/2023-dod guideline data preview: 2 KDIGO. KDIGO methods manual for guideline developments

# 2023 KDIGO Holistic approach to chronic kidney disease (CKD) treatment and risk modification.







### Practical Approach to Prescribing SGLT2i



 Zoungas S, de Boer IH. SGLT2i in diabetic kidney disease . Clin J Am Soc Nephrol <sub>57</sub>. 2021;16(4): 631-633

## **Cost-Effectiveness of Dapagliflozin as a Treatment for Chronic Kidney Disease**

| Outcome                                                                                       | Dapagliflozin plus Standard<br>Therapy | Standard Therapy             | Incremental              |
|-----------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|--------------------------|
| United Kingdom                                                                                |                                        |                              |                          |
| Total costs (95% CrI), \$                                                                     | 109,596 (77,765 to 133,287)            | 102,774 (74,017 to 126,749)  | 6822 (-3293 to 17,138)   |
| Drug acquisition                                                                              | 6034                                   | 700                          | 5334                     |
| CKD management (not on KRT)                                                                   | 36,815                                 | 34,920                       | 1895                     |
| KRT                                                                                           | 63,357                                 | 63,826                       | -469                     |
| Adverse events, hospitalization for                                                           | 3391                                   | 3328                         | 63                       |
| heart failure, and acute decline in kidney function                                           |                                        |                              |                          |
| Total QALYs gained (95% CrI)                                                                  | 8.68 (6.79 to 9.72)                    | 7.86 (6.21 to 9.00)          | 0.82 (0.34 to 1.17)      |
| ICER, \$/QALY                                                                                 | ` ´                                    | · _ /                        | 8280                     |
| Germany                                                                                       |                                        |                              |                          |
| Total costs (95% CrI), \$                                                                     | 254,579 (186,892 to 304,520)           | 236,908 (174,288 to 286,922) | 17,671 (-3328 to 35,900) |
| Drug acquisition                                                                              | 7428                                   | 417                          | 7011                     |
| CKD management (not on KRT)                                                                   | 128,095                                | 117,133                      | 10,962                   |
| KRT                                                                                           | 114,735                                | 115,391                      | -656                     |
| Adverse events, hospitalization for<br>heart failure, and acute decline in<br>kidney function | 4321                                   | 3967                         | 354                      |
| Total QALYs gained (95% CrI)                                                                  | 10.32 (7.96 to 11.49)                  | 9.32 (7.28 to 10.65)         | 1.00 (0.43 to 1.40)      |
| ICER, \$/QALY                                                                                 |                                        | · _ /                        | 17,623                   |
| Spain                                                                                         |                                        |                              |                          |
| Total costs (95% CrI), \$                                                                     | 164,048 (118,905 to 202,510)           | 152,862 (112,237 to 191,511) | 11,186 (-2903 to 24,614) |
| Drug acquisition                                                                              | 4447                                   | 596                          | 3851                     |
| CKD management (not on KRT)                                                                   | 74,305                                 | 67,320                       | 6985                     |
| KRT                                                                                           | 81,490                                 | 81,660                       | -170                     |
| Adverse events, hospitalization for                                                           | 3807                                   | 3286                         | 521                      |
| heart failure, and acute decline in                                                           |                                        |                              |                          |
| kidney function                                                                               |                                        |                              |                          |
| Total QALYs gained (95% CrI)                                                                  | 9.79 (7.56 to 11.20)                   | 8.83 (6.89 to 10.28)         | 0.96 (0.43 to 1.41)      |
| ICER, \$/QALY                                                                                 | _                                      | _                            | 11,687                   |

#### Health- Economic Analysis of DAPA-CKD

#### **ICER= Incremental Increase in Cost / Incremental Increase in QALY**

#### ICER for Dapagliflozin (Germany) = \$17,671/1= \$17,671

#### This is below the Willingness to Pay / 1 QALY gained threshold, of \$40,000 for Germany - Hence DRUG APPROVED.

Cost-Effectiveness of Dapagliflozin as a treatment for Chronic Kidney Disease . McEwan et al ; CJASN 17: 1730-1741 , 2022

٠

## Case :

43-year-old Male DM x 14 years Weight : 168 kg BMI : 48

Labs: eGFR = 65 ml/min uPCR= 2.4- 3.2 g/g Cr

Meds: Patient on ARB Assessment : Uncontrolled Proteinuria with DM and CKD Progressive Decline in eGFR > 5ml/min/year

Plan : What New Treatment Options Available



### Case:

68 year old female , CKD 4 , T2DM x 20 years uPCR = 6 g/g Creatinine S.Cr = 180 umol/l eGFR = 25 ml/min Meds : Valsartan 160 mg /day

Started on Combination of Dapagliflozin 10 mg/day and Fineronone 10 mg /day

After 6 months uPCR is 1.5 g/g and eGFR 21 ml/min



Case:

26 year old female with IgA Nephropathy

On ARB

Started on Dapagliflozin with improvement in uPCR

eGFR stable over last 36 months



## **Summary & Conclusions**



### **39%** RRR

for the primary composite endpoint (≥50% sustained decline in eGFR, ESKD, renal or CV death) **44%** RRR for the renal composite (≥50% sustained decline in eGFR, ESKD, or renal death) **29%** RRR for the composite of CV death or hospitalization for heart failure

31% RRR

all-cause mortality

Consistent clinical benefits in patients with CKD across major subgroups including in patients with and without T2D, and by baseline eGFR and UACR categories

Dapagliflozin was well-tolerated for the treatment of CKD (in patients with and without T2D) and data confirm the known safety profile

DAPA-CKD builds upon the evidence for dapagliflozin in the prevention of hHF and worsening of kidney disease in DECLARE<sup>2</sup> and reduction in the risk of worsening HF and CV death in DAPA-HF<sup>3</sup>

CKD = chronic kidney disease; CV = cardiovascular; eGFR = estimated glomerular filtration rate; ESKD = end-stage kidney disease; HF = heart failure; hHF = hospitalization for heart failure; RRR = relative risk reduction; SGLT-2 = sodium glucose co-transporter 2; T2D = type 2 diabetes; UACR = urinary albumin-to-creatinine ratio.

1. Heerspink HJL et al. N Engl J Med. 2020; 383:1436-1446. 2. Wiviott SD. et al. N Engl J Med. 2019;380:347-357. 3. McMurray JJV et al. N Engl J Med. 2019;381:1995-2008.



## For Reporting Adverse events and /or Product Quality Complains:



Website: <u>https://contactazmedical.astrazeneca.com</u>



• E-mail: <u>Patientsafety-azgulf@astrazeneca.com</u>



• Call AstraZeneca FZ LLC land line : +97143624888.

## For Medical information Enquires :



Website: https://contactazmedical.astrazeneca.com





• Call AstraZeneca FZ LLC land line : +97143624888

# **Thank You**