HOSTED BY

DUBAI WORLD TRADE CENTRE

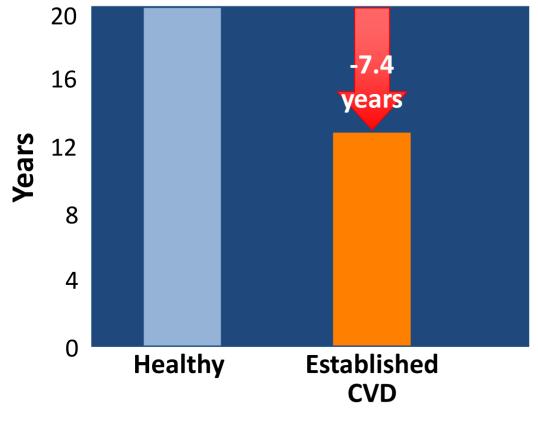
Organized by

Wired*i*N

DECLARATION OF INTERESTS

Carlos Aguiar has received payments for speaker services, consultancy, and research activities from the following entities:

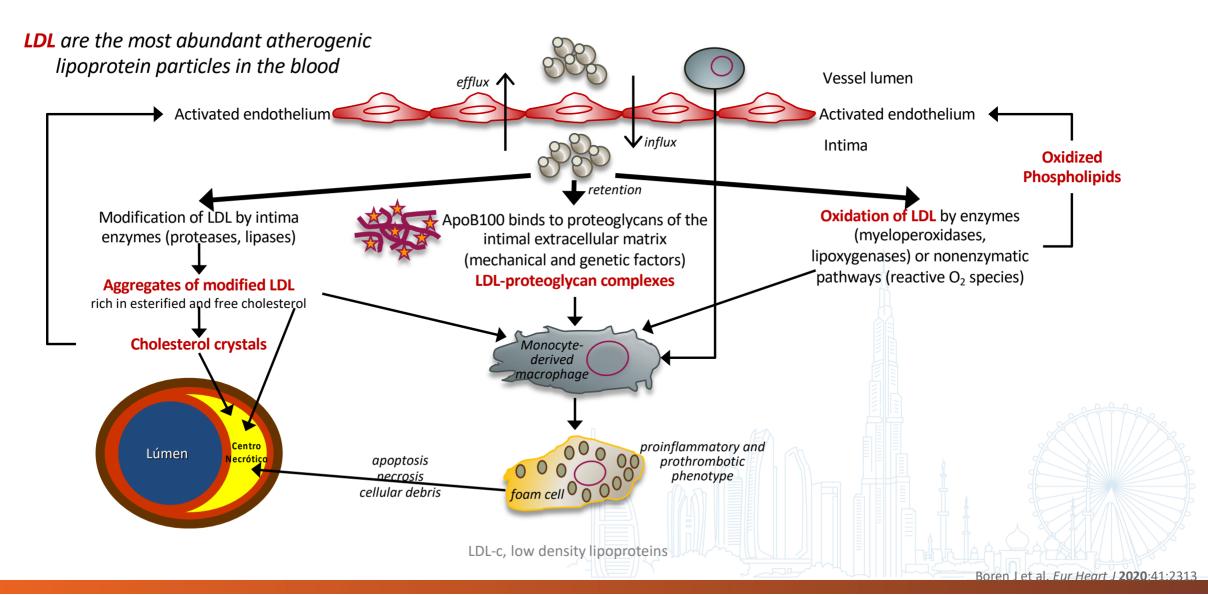
Abbott, Abbvie, Amgen, Alnylam, AstraZeneca, Bayer, BiAL, Boehringer-Ingelheim, Daiichi-Sankyo, Ferrer, Gilead, GSK, Lilly, Novartis, Pfizer, Sanofi, Servier, Takeda, Tecnimede


KEY MESSAGE #1

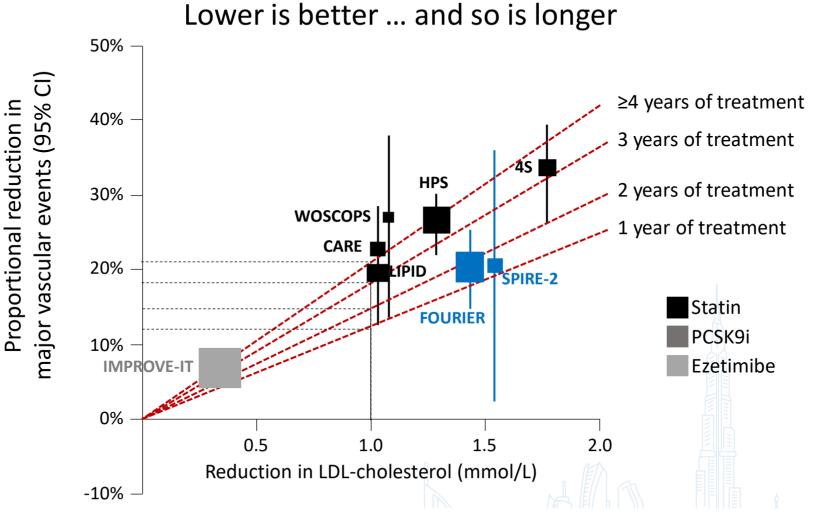
LDL-C goal attainment is a fundamental intervention to reduce mortality and morbidity in high risk individuals ... but CVD risk can remain very high even when LDL-C is at goal

BURDEN OF CARDIOVASCULAR DISEASE

Average life expectancy for a man, age 60 years, Framingham

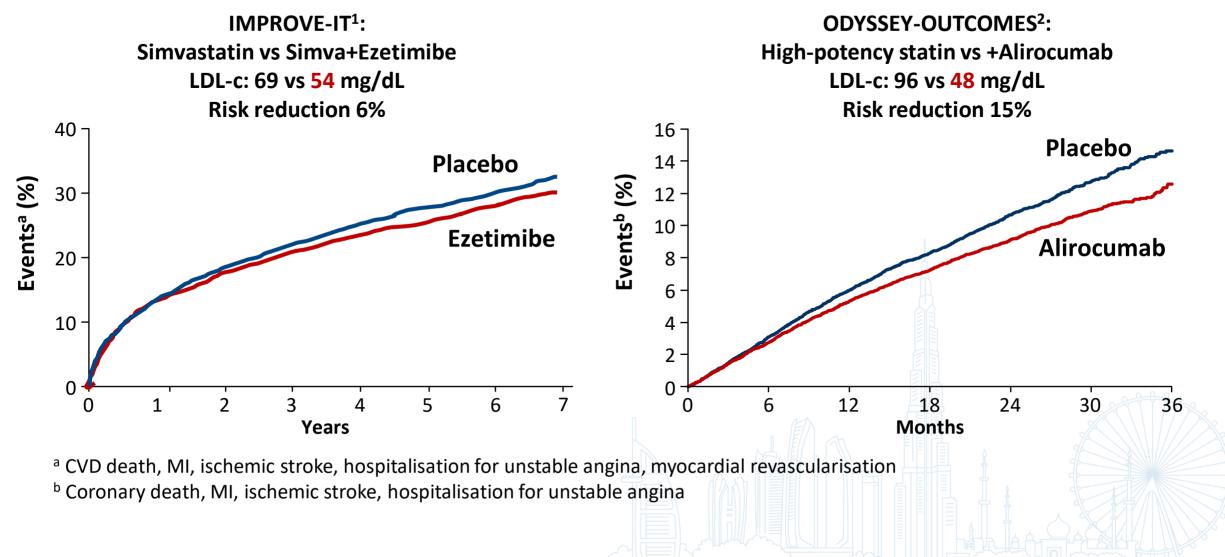

Lipid-lowering interventions are truly meant to prevent the occurrence of cholesterol-related complications that substantially reduce life expectancy and quality of life.

Average life expectancy for a woman, age 60 years: 24.5 years if healthy; 16.1 if established CVD; 11.6 if prior MI; 9.81 if prior stroke; 8.26 if heart failure. CVD, cardiovascular disease. MI, myocardial infarction.


LDL-CHOLESTEROL

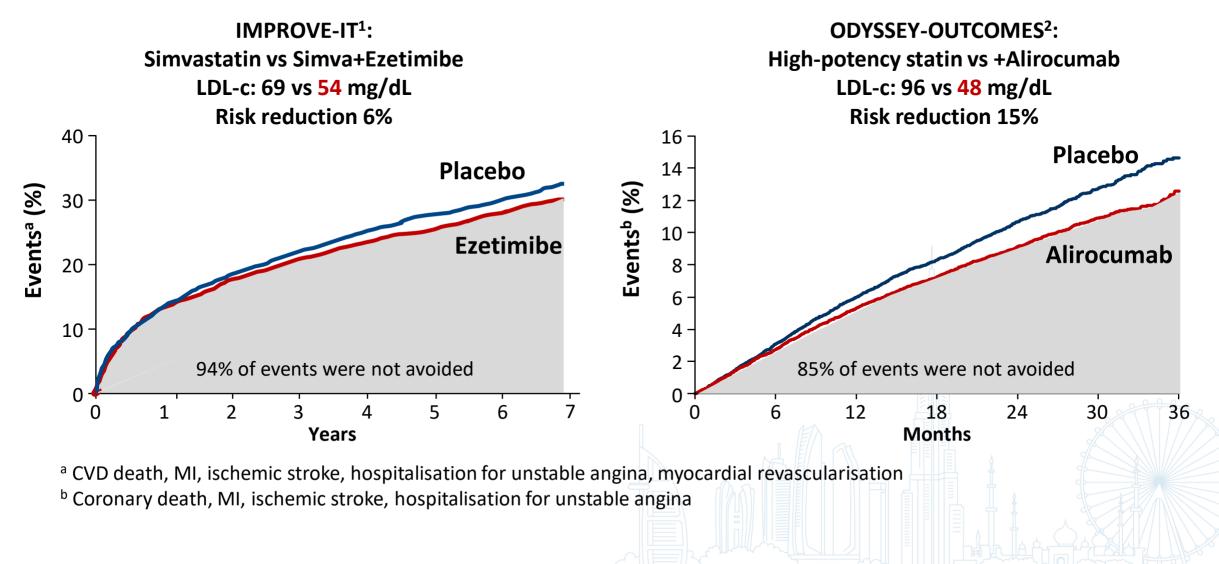
Primary driver of atherogenesis

LDL-CHOLESTEROL LOWERING THERAPY



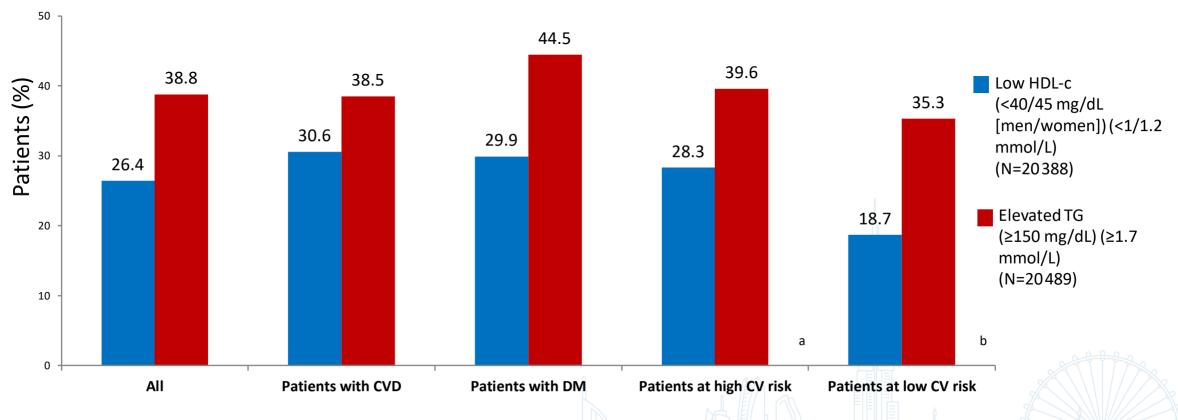
4S, Scandinavian Simvastatin Survival Study. CARE, Cholesterol and Recurrent Events Trial. FOURIER, Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk. HPS, Heart Protection Study. IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial. LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease. SPIRE-2, Studies of PCSK9 Inhibition and the Reduction of Vascular Events 2. WOSCOPS, West Of Scotland Coronary Prevention Study.

TRENDS IN CARDIOVASCULAR DISEASE


Residual risk despite LDL-c reducing therapies

TRENDS IN CARDIOVASCULAR DISEASE

Residual risk despite LDL-c reducing therapies


KEY MESSAGE #2

A common feature of individuals who have a persistently high residual risk of CVD events, despite taking LDL-C lowering treatments ... is a TG level >1.7 mmol/L

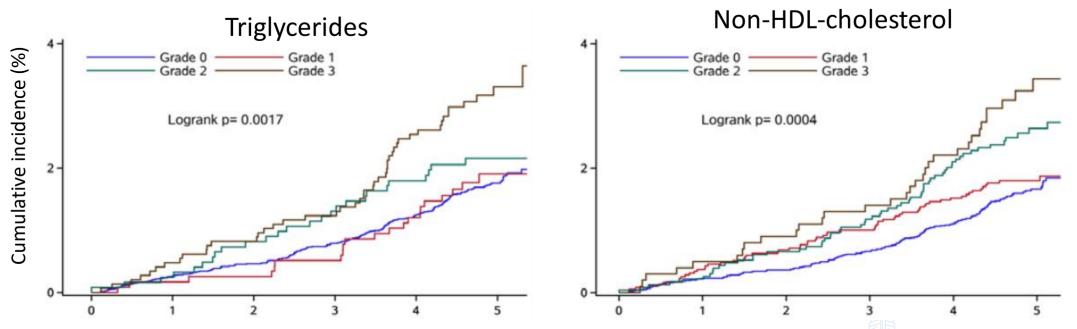
Highly prevalent condition, despite statin therapy^{1,2}

Proportion of patients with TGs or HDL-c abnormalities in the DYSIS study¹

DYSIS¹: 22,063 patients from 2954 sites across 11 European countries and Canada between April 2008 and February 2009 ^aDefined as CVD and DM and/or SCORE ≥5%; ^bDefined as SCORE <5%

Contribution to excess risk of cardiovascular disease

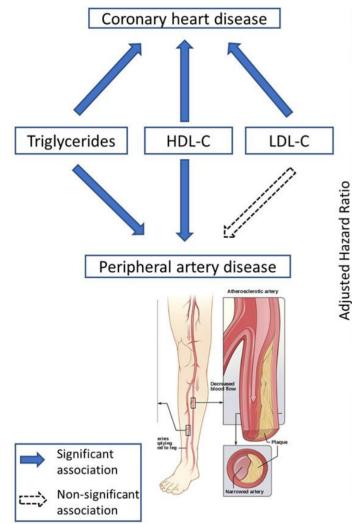
Elevated TGs and low levels of HDL-c have a synergistic detrimental impact

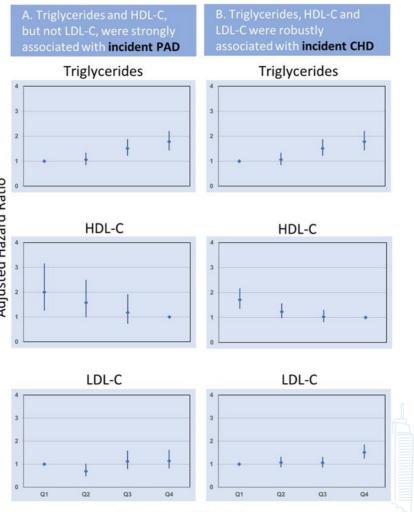

on residual CVD risk in patients on target LDL-c

Odds ratio for Coronary Heart Disease [*]		TG quintile					
		≤72 mg/dL (0.8 mmol/L)	72–102 mg/dL (0.8-1.2 mmol/L)	102–133 mg/dL (1.2-1.5 mmol/L)	133–190 mg/dL (1.5-2.1 mmol/L)	> 190 mg/dL (2.1 mmol/L)	
	>53 mg/dL (1.4 mmol/L)	1.0				0.6	
	42–53 mg/dL (1.1-1.4 mmol/L)		1.3			1.2	
HDL-c quintile	36–42 mg/dL (0.9-1.1 mmol/L)			2.0		2.4	
	30–36 mg/dL (0.8-0.9 mmol/L)				4.1	5.0	
	≤30 mg/dL (0.8 mmol/L)	3.1	4.2	5.6	7.6	10.3	2222
*345 patients with mean LDL-c < 81 mg/dL (2.1 mmol/L			mol/L)				

Contribution to excess risk of cardiovascular disease

Higher risk of ischemic stroke


Cumulative burden of TG, TC, LDL-c and non-HDL-c was associated with higher subsequent ischemic stroke risk even with low cumulative burden of LDL-c

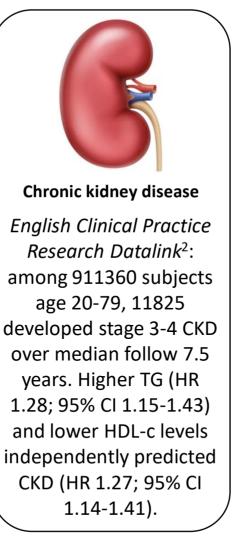

Kailuan General Hospital: 43,836 primary prevention patients participating in 4 surveys from 2006-2013. During follow up (mean 4.67 years), 1023 (2.33%) incident ischemic strokes were recorded. Individual cumulative lipid burden was calculated as number of years (2006–2013) multiplied by the lipid levels.

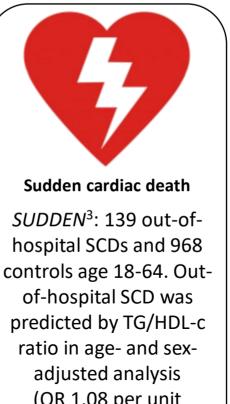
Contribution to excess risk of cardiovascular disease

Higher risk of peripheral arterial disease

- Higher baseline levels of TG
 and lower levels of HDL were
 independently and robustly
 associated with incident PAD¹
- Contribution of LDL-c seems
 smaller for PAD than CHD^{1,2}


Atherosclerosis Risk in Communities (ARIC)¹: 8,330 participants (mean age 62.8 years) free of PAD at baseline (1996– 1998) were followed through 2015. There were 246 incident PAD cases with a median follow-up of 17 years.


PAD, peripheral arterial disease


•

Contribution to disease burden

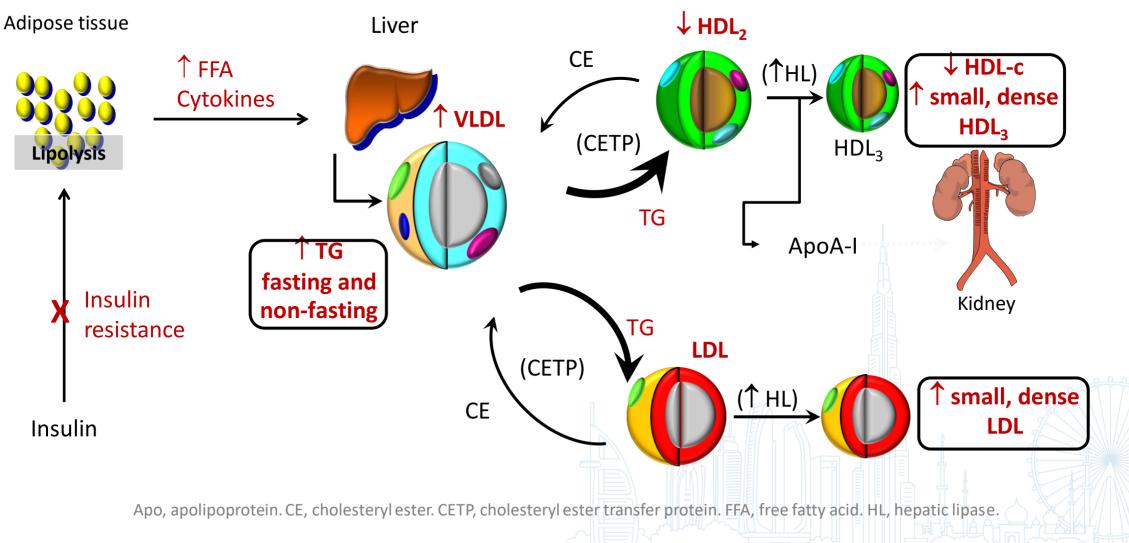
(OR 1.08 per unit increase in TG/HDL-c ratio; 95% CI 1.03-1.12).

All-cause mortality

*BIP*³: among 15355 patients age 45-74 with CAD. multivariable adjusted mortality over a median follow up of 22.8 vears was associated with TG (HR 1.06 per unit increase in log TG; 95% CI 1.01-1.12).

HF, heart failure. HR, hazard ratio. OR, odds ratio.

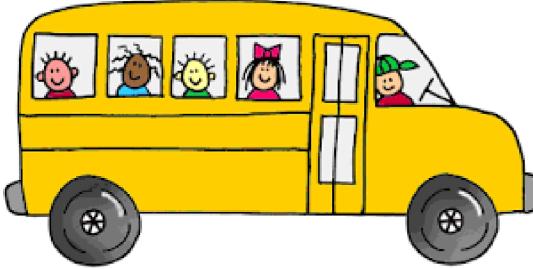
1. Halldin AK et al. BMJ Open 2020;10:e036709. 2. Weldegiorgis M et al. BMC Nephrology 2022;23:312. 3 Hosadurg N et al Mayo Clin Proc Inn Ougl Out 2018;2:257 4 Klempfner R et al Circ Cardiovasc Ougl Outcomes 2016:9:100


KEY MESSAGE #3

When TG are >1.7 mmol/L, LDL is no longer the only atherogenic lipoprotein particle ... TG-rich lipoprotein particles also become atherogenic, and accelerate the accumulation of cholesterol and exacerbate inflammation in the arterial wall

ROLE OF TRIGLYCERIDE-RICH REMNANTS

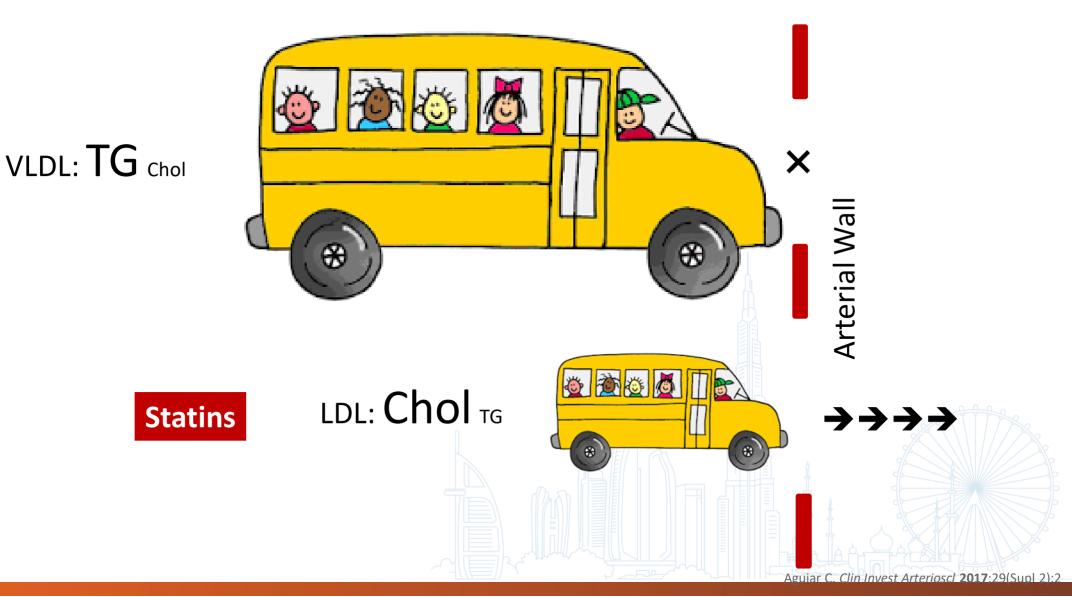
Pathophysiology of atherogenic dyslipidemia



ROLE OF TRIGLYCERIDE-RICH REMNANTS

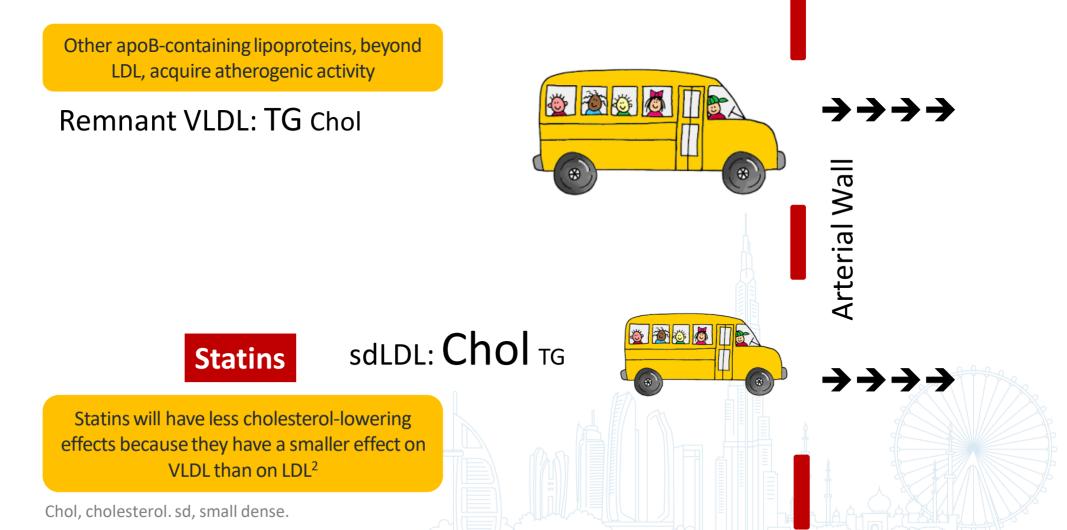
Very simply perspective

- Atherosclerosis is about cholesterol
- Cholesterol is cholesterol
- Lipids are transported in lipoprotein particles


- Some particles deliver cholesterol from liver to peripheral tissue, but particle size is critical
- Others deliver cholesterol from tissues back to liver

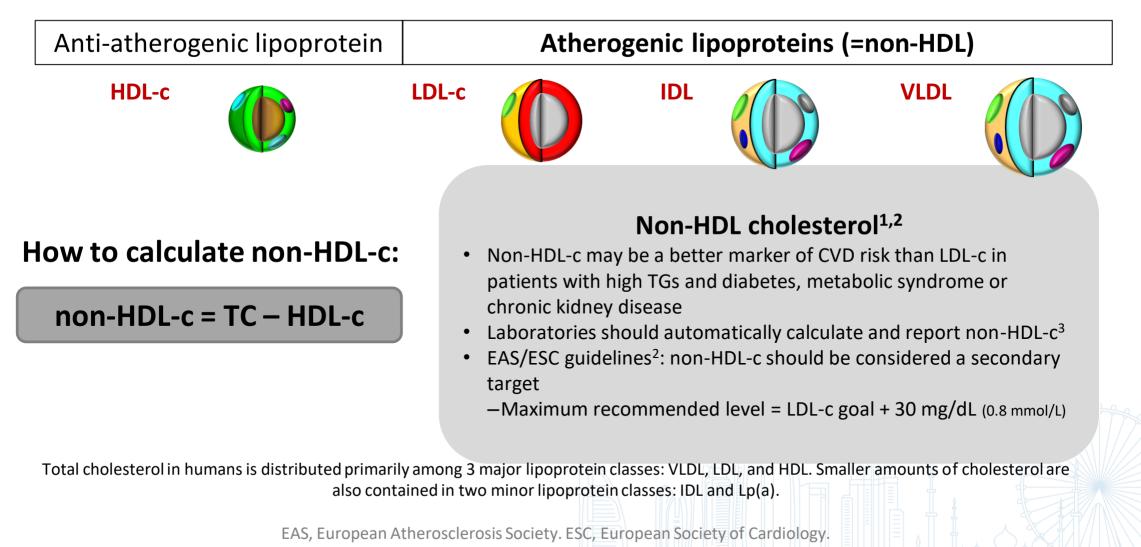
Arterial Wal

ATHEROGENIC LIPOPROTEINS


If TG levels are normal

ATHEROGENIC LIPOPROTEINS

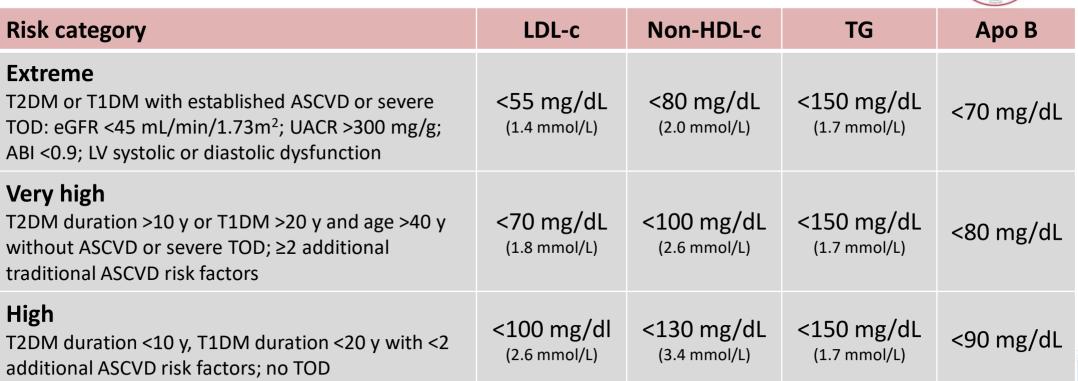
If TG levels are 150-500 mg/dL (1.7-5.7 mmol/L)¹


KEY MESSAGE #4

Non-HDL is a better measure of all the cholesterol that is potentially atherogenic ... and guidelines have made it a fundamental target to control CVD risk

NON-HDL CHOLESTEROL

Better treatment target ... going beyond LDL-c



NON-HDL CHOLESTEROL

American Association of Clinical Endocrinology Guidelines

Non-HDL-c and LDL-c are Co-Primary Targets of Therapy

Management of hyperTG is important with a goal of <150 mg/dL in T2D. In persons with fasting TG >200 mg/dL despite a maximally tolerated statin, optimal glucose control, tight adherence to a healthy diet, fenofibrate and/or high-dose prescription grade omega-3 fatty acid may help to achieve goals for TG levels and nonHDL-C.

NON-HDL CHOLESTEROL Middle East Consensus 2021

Atherosclerosis Volume 343, February 2022, Pages 28-50

Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East: 2021 update

Nasreen Alsayed ^a $\stackrel{\boxtimes}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Wael Almahmeed ^b, Fahad Alnouri ^{c, 1}, Khalid Al-Waili ^d, Hani Sabbour ^e, Kadhim Sulaiman ^f, Mohammad Zubaid ^g, Kausik K. Ray ^{h, 1}, Khalid Al-Rasadi ^{i, 1}

7.3.6. Fibrates

The addition of a fibrate to a statin may benefit some patients with type 2 diabetes with both high TG and low HDL-C dyslipidaemia pattern, particularly those with microvascular complications. When used as an add-on therapy to statins, fibrates are associated with greater reductions in TG levels, and a greater increase in HDL-C (compared with either used as a monotherapy) [132]. The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study demonstrated that fibrates decrease ASCVD events in subjects with type 2 diabetes with elevated levels of plasma TG and low levels of HDL-C [133]. Furthermore, in the ACCORD-Lipid trial, participants with the combination of significant hypertriglyceridaemia and low HDL-C experienced a 31% lower CVD event rate with statin-fibrate combined treatment [134]. Fibrates are safe and generally well tolerated.

[136]. The use of fibrates in addition to statins in patients with metabolic dyslipidaemia may lower TG levels, increase HDL-C, and lower the risk of ASCVD events [132–134]. Fibrates are generally well tolerated.

NON-HDL CHOLESTEROL

American Heart Association Scientific Advisory

N-3 fatty acids for management of hypertriglyceridemia

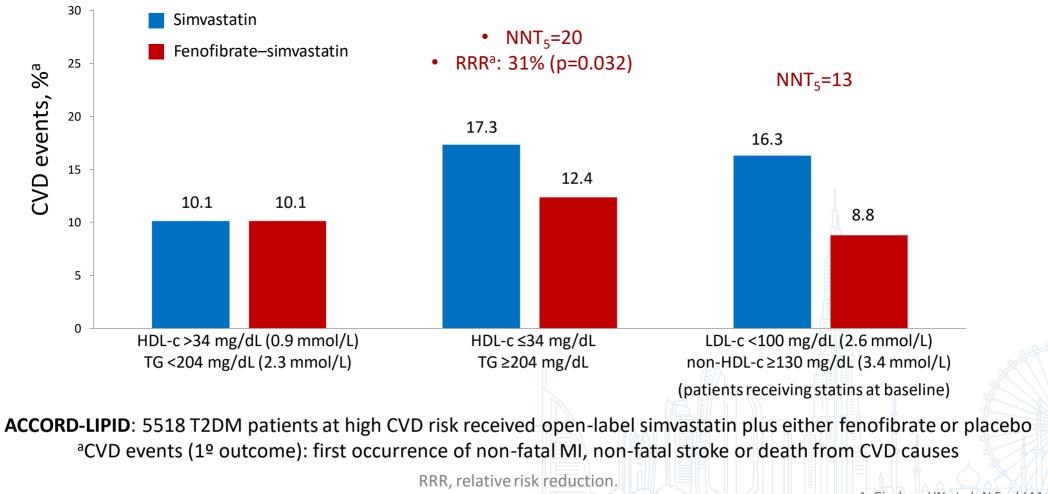
n-3 FAs (**4 g/day**) for **improving ASCVD risk in patients with hypertriglyceridemia** is supported by a \checkmark 25% in major adverse cardiovascular endpoints in REDUCE- IT

TG 200-499 mg/dL	4 g/day n-3 FA: ♥TG by 20-30% and no ♠LDL-c			
TG ≥500 mg/dL	4 g/day n-3 FA: ♥TG by ≥30%; DHA-containing agents 个LDL-c			
Children/adolescents	Apparently safe; more research needed to further evaluate efficacy			
Use with other lipid therapy	Safe and apparently additive ♥TG with statin therapy; apparently safe with fibrates but more research needed to evaluate efficacy			
Prescription n-3 FA agent	All prescription agents appear comparably effective, but head-to-head comparisons are lacking Safe and additive TG reduction on top of statins and fibrates			

KEY MESSAGE #5

To reduce the exacerbated risk of CVD in individuals with high TG (non-HDL >0.8 mmol/L above the LDL-C), add fenofibrate and/or n-3 FA to the LDL-C lowering treatment

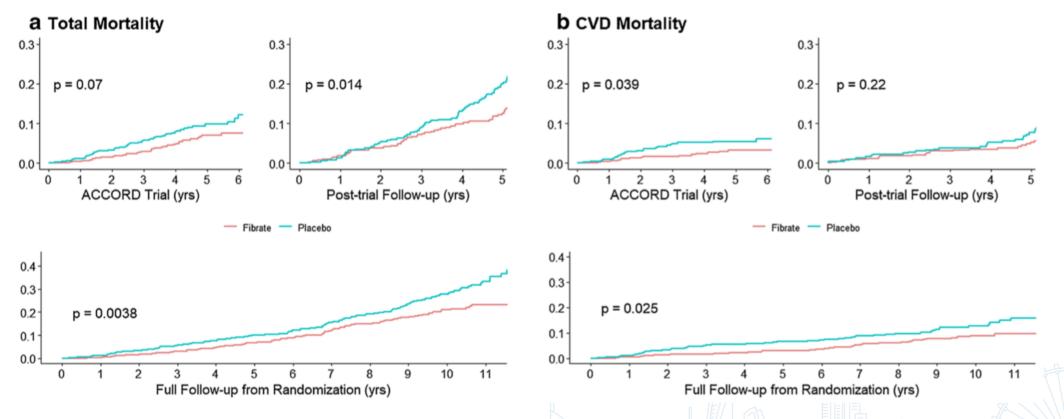
FENOFIBRATE


Optimizing cardiovascular disease outcomes in type 2 diabetes

Trial	Patient population	Outcomes			
FIELD ^{1,2}	9795 patients with T2DM • 22% patients with CVD	All patients Baseline median TG levels of 1.7 mmol/L Non-fatal MI + CHD death RRR 11% (p=0.16)	Patients with TG ≥2.30 mmol/L and HDL <1.30/1.29 mmol/L men/women ^a Total CV events (CV deaths, MI, stroke, revascularisation) RRR 27% (p=0.005)		
ACCORD Lipid ^{3,4}	5518 patients with T2DM 37% patients with CVD 	All patients Baseline median TG levels of 1.8 mmol/L CVD death, non-fatal MI + non-fatal stroke RRR 8% (p=0.32)	Patients with TG ≥2.3 mmol/L and HDL-c ≤0.9 mmol/L ^b CVD death, non-fatal MI + non-fatal stroke RRR 31% (p=0.032) NNT ₅ =20		
	analysis of data from the FIELD er needed to treat for 5 years. T2DM,	trial ² ; ^b Pre-specified subgroup ana type 2 diabetes mellitus.	alysis for ACCORD Lipid trial		

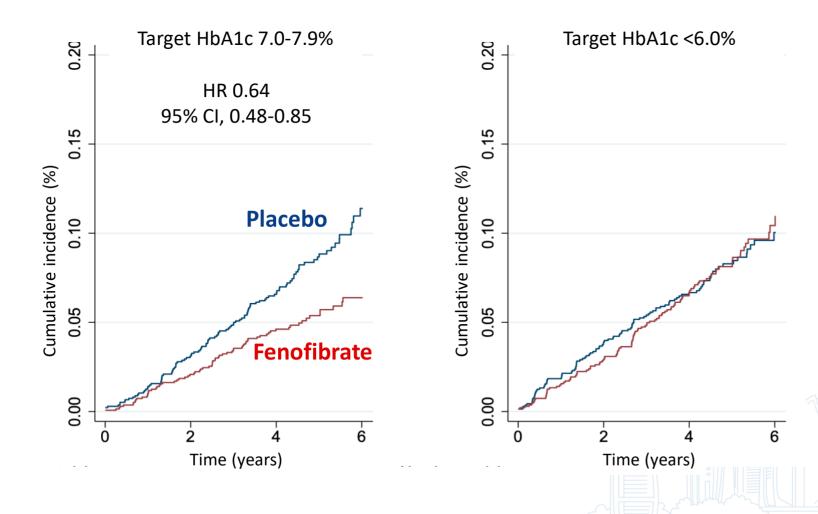
1. Keech A et al. *Lancet* **2005**;366:1849. 2. Scott R et al. *Diabetes Care* **2009**;32:493. 3. Ginsberg HN et al. *N Engl J Med* **2010**;362:1563. 4. FDA Endocrinologic and Metabolic Drugs Advisory Committee Meeting. 19 May 2011.

EFMS O Combination improves cardiovascular disease outcomes in type 2 diabetes


Reduction in the number of CVD events in the ACCORD Lipid trial according to lipid profile^{1,2}

1. Ginsberg HN et al. *N Engl J Med* **2010**;362:1563. 2. FDA Endocrinologic and Metabolic Drugs Advisory Committee Meeting, 19 May 2011.

EFMS O Combination improves cardiovascular disease outcomes in type 2 diabetes


Legacy effect in ACCORDION study

ACCORDION: 853 atherogenic dyslipidemia survivors of ACCORD consented to an additional 5 years nontreatment, observation-only study (mean total follow-up 9.7 years). Minimal differences between randomized groups for any of the lipid parameters during the post-trial period.

EFMS Tombination improves cardiovascular disease outcomes in type 2 diabetes

Reduction in risk of CV death or heart failure hospitalization in ACCORD-LIPID

ACCORD-LIPID: 5518 T2DM patients at high CVD risk received open-label simvastatin plus either fenofibrate or placebo

Endpoint for this analysis: CV death or heart failure hospitalization.

Fenofibrate reduced the endpoint (6.9%) vs placebo (8.3%): HR 0.82 (95% CI, 0.68-1.00; p=0.048). This result was independent of baseline lipid levels.

Fenofibrate significantly reduced heart failure hospitalizations among patients receiving the standard glucose-lowering treatment: HR 0.60 (95% CI 0.42-0.85)

Safety and tolerability of combination therapy

- Fenofibrate does not influence the metabolism or pharmacokinetics of statins¹
 - Another fibrate, gemfibrozil, inhibits statin glucuronidation-mediated lactonisation¹
 - When used in combination with simvastatin in the ACCORD Lipid trial, fenofibrate treatment did not increase statin concentration and the risk of myositis or rhabdomyolysis²

 Fenofibrate-statin combination therapy showed glucose-mitigating effects in patients with mixed dyslipidemia^{3,4}

> 1. Prueksaritanont T et al. Drug Metab Dispos 2002;30:1280. 2. Ginsberg HN et al. N Engl J Med 2010;362:1563. 3. Krysiak R et al. Pharmacol Rep 2010:62:120. 4. Wysocki J et al. Int J Clin Pharmacol Ther 2004:42:212.

Safety and tolerability of combination therapy

Kidney	Liver	Pancreas
 Reversible,^{1,2} increases in creatinine production^{3,4} Reduction in urine albumin concentration^{3,4} and rate and progression of microand macroalbuminuria¹ Lower loss of eGFR^{3,4,5} No long-term impact on renal function or ESRD observed¹ 	 Increases in ALT observed in a small number of patients¹ 	 Non-significant increases in pancreatitis following long-term treatment³ No association between fibrate and pancreatitis according to a recent meta-analysis⁶

ALT, alanine aminotransferase. eGFR, estimated glomerular filtration rate. ESRD, end-stage renal disease.

 1. Ginsberg HN et al. N Engl J Med 2010;362:1563.

 2. Mychaleckyj JC et al. Diabetes Care 2012;35:1008. 3. Keech A et al. Lancet 2005;366:1849.

 4. Davis TM et al. Diabetologia 2011:54:280. 5. Frazier R et al. Kidney Int Rep 2018;4:94. 6. Preiss D et al. JAMA 2012;308:804.

KEY MESSAGES

- 1. LDL-C goal attainment is a fundamental intervention to reduce mortality and morbidity in high risk individuals ... but CVD risk can remain high even when LDL-C is at goal
- 2. A common feature of individuals who have a persistently high residual risk of CVD events, despite taking LDL-C lowering treatments ... is a TG level >1.7 mmol/L
- 3. When TG are >1.7 mmol/L, LDL is no longer the only atherogenic lipoprotein particle ... TG-rich lipoprotein particles also become atherogenic

KEY MESSAGES

- 4. Non-HDL is a better measure of all the cholesterol that is potentially atherogenic ... and guidelines have made it a fundamental target to control CVD risk, beyond LDL-C
- 5. To reduce the exacerbated risk of CVD in individuals with high TG (non-HDL >0.8 mmol/L above the LDL-C), add fenofibrate and/or n-3 FA to the LDL-C lowering treatment

KEEP IN MIND

Atherosclerosis is the most common preventable chronic disease ... but it remains #1 cause of death worldwide

'Residual risk' is a **euphemism for failed prevention**

- ✓ Up to 95% of all MI can be prevented
- Almost as much of other atherosclerotic complications can be prevented
- ✓ Failure should be a rare event

Let's transform atherosclerosis into a rare disease ... We know how and we have what is needed